欢迎访问海南大学生物医学工程学院

当前位置: 首页 >> 教育教学 >> 人才培养 >> 博士研究生导师 >> 正文
30 2024.12

阅读:

    王征


王征(教授),海南大学生物医学工程学院客座教授,北京大学心理与认知科学学院,麦戈文脑科学研究所、北大-清华生命科学联合中心研究员,博士生导师。1998 年本科毕业于大连理工大学,2003年在华中科技大学获硕士学位,2008年在加拿大西安大略大学获博士学位,2009-2011年在美国范德堡大学心理学系开展博士后研究,2011-2021年在中国科学院脑科学与智能技术卓越创新中心历任研究员、资深研究员,兼任脑影像平台主管。2014年入选中国科学院技术支撑人才,2023年获北京市科学技术进步二等奖(排名第一)。先后主持或承担了中科院3.0T和9.4T磁共振成像系统、中科院先导科技专项、科技部重点研发计划、基金委国家重大科研仪器设备研制、原创探索专项、上海市科技重大专项、广东省重点领域研发计划、美国国立卫生研究院R01等相关科研任务。近年来在Science等国际知名学术期刊上发表学术论文70余篇,是国际医学磁共振协会、国际神经科学学会、美国生物精神病学学会的长期会员,担任多个国际学术期刊(Neuroscience Bulletin等)编委和审稿人,以及发改委、财政部、科技部、教育部、工信部、基金委等多个国家部委机构的评审专家。 过去10余年来指导已毕业的研究生中,1人获全国博士后创新计划,2人获上海市超级博士后计划支持,4人获国家奖学金,1人获北京市普通高等学校优秀毕业生奖,1人获中国科学院院长优秀奖,1人获中国科学院大学优秀学生奖,1名外籍留学生先后获得了中国科学院院长特别奖(2017)、中国科学院大学优秀国际学生称号(2019)等等。

  研究方向  

王征实验室重点关注融合磁共振影像学、认知决策计算、行为学、转录组学及神经调控技术,探索精神疾病的量化诊断与个体化干预。研究特色在于构建非人灵长类疾病模型,解析临床情感认知障碍类疾病的环路机制,研创神经调控新技术开展认知干预治疗,开辟灵长类动物模型向临床转化应用的新途径,推进精神疾病的客观诊疗。主要研究方向包括:

1.开展超高场灵长类磁共振成像与转录组学大数据研究,运用人工智能方法深度挖掘脑联接图谱的生物学基础;

2.重点解析强迫症、物质成瘾等情感认知障碍类疾病的环路机制,建立影像学指标评估优化认知行为、药物以及深部脑刺激等治疗方案的临床疗效;

3. 利用基因编辑等多种技术手段建立灵长类动物疾病模型,同时并行开展临床研究(包括转录组学、行为学、影像学和神经调控干预),探索模式动物-人类临床试验相互的转化路径,发展跨物种智能算法辅助的精准诊断和治疗。

  招生需求:

招收计算机图像、自动控制、生物医学工程、数学、物理、认知心理、神经科学等专业背景的博士生1人。

联系方式:110247@hainanu.edu.cn

  代表性论著  

ØMapping brain connectomics in nonhuman primates offers a cutting-edge path to advance our understanding of neural networks, especially as we aim to translate these insights into human brain health applications. By integrating multi-modal approaches—such as MRI/PET imaging, genetic and transcriptomic profiling, behavioral analysis, and computational modeling—this line of our research has the potential to unveil intricate connections and functions within the brain that correlate with behavior, genetic traits, and disease vulnerabilities:

1) Zhang Z1, Huang YC1, Chen XY, Li JH, Yang Y, Lv LB, Wang JH, Wang MY*, Wang YW*, Wang Z*, State-specific regulation of electrical stimulation in the intralaminar thalamus of macaque monkeys: network and transcriptional insights into arousal, Advanced Science, 2024, 11(33): e2402718.

2) Wang W1, Bo TT1, Zhang G1, Li J, Ma JJ, Ma LX, Hu GL, Tong HG, Lv Q, Daniel JA, Luo D, Chen YJ, Wang MY, Wang Z*, Wang G.-Z.*, Noncoding transcripts are linked to brain resting-state activity in non-human primates, Cell Reports, 2023, 42: 112652.

3) Bo TT1, Li J1, Hu GL, Zhang G, Wang W, Lv Q, Zhao SL, Qin M, Yao XH, Wang MY*, Wang GZ*, Wang Z*., Brain-wide and cell-specific transcriptomic insights into MRI-derived cortical morphology in macaque monkeys, Nature Communications, 2023, 14:1499.

4) Yan MC1, Yu WW1, Lv Q, Lv QM, Bo TT, Chen XY, Liu YL, Zhan YF, Yan SY, Shen XY, Yang BF, Hu QM, Yu JL, Qiu ZL, Feng YJ, Zhang XY, Wang H, Xu FQ, Wang Z*, Mapping brain-wide excitatory projectome of primate prefrontal cortex at submicron resolution and comparison with diffusion tractography, eLife, 2022, 11: e72534.

5) The PRIMatE Data and Resource Exchange (PRIME-DRE) Global Collaboration Workshop and Consortium, Toward next-generation primate neuroscience: a collaboration-based strategic plan for integrative neuroimaging, Neuron, 2022, 110: 1-5.

6) Zhan YF1, Wei JZ1, Liang J, Xu X, He R*, Robbins TW, Wang Z.*, Diagnostic classification for human autism and obsessive-compulsive disorder based on machine learning from a primate genetic model, American Journal of Psychiatry, 2021, 178(1): 65-76. [Commentary by van den Heuvel OA, Can transgenic monkeys help us innovate transdiagnostic therapies? American Journal of Psychiatry, 2021, 178(1): 8-10. Kalin NH, Genes, cells, and neural circuits relevant to OCD and autism spectrum disorder, American Journal of Psychiatry, 2021, 178(1): 1-4]

7) Qin DD1, Zhou JK1, He XC1, Shen XY1, Li C, Chen HZ, Yan LZ, Hu ZF, Li X, Lv LB, Yao YG*, Wang Z.*, Huang XX*, Hu XT*, Zheng P*, Depletion of giant ANK2 in monkeys causes drastic brain volume loss, Cell Discovery, 2021, 7(1):113.  

8) Lv QM, Yan MC, Shen XY, Wu J, Yu WW, Yan SY, Yang F, Zeljic K, Shi YQ, Zhou ZF, Lv LB, Hu XT, Menon R, Wang Z.*, Normative analysis of individual brain differences based on a population MRI-based atlas of cynomolgus macaques, Cerebral Cortex, 2021, 31(1): 341-355.

9) Cai DC1, Wang ZW1, Bo TT1, Yan SY1, Liu YL, Liu ZW, Zeljic K, Chen XY, Zhan YF, Xu X, Du YS, Wang YW, Cang J, Wang GZ, Zhang J, Sun Q, Qiu ZL, Ge SJ*, Ye Z, Wang Z.*, MECP2 duplication causes aberrant GABA pathways, circuits and behaviors in transgenic monkeys: neural mappings to patients with autism, Journal of Neuroscience, 2020, 40(19): 3799-3814.

10) Cui Y, Li X, Zeljic K, Shan S, Qiu Z*, Wang Z*, Effect of PEGylated magnetic PLGA-PEI nanoparticles on primary hippocampal neurons: reduced nano-neurotoxicity and enhanced transfection efficiency with magnetofection, ACS Applied Materials & Interfaces, 2019, 11(41): 38190-38204.

11) Zhou TT1, Zhu H1, Fan ZX, Wang F, Chen Y, Liang HX, Yang ZF, Zhang L, Lin LN, Zhan Y, Wang Z, Hu H*, History of winning remodels thalamo-PFC circuit to reinforce social dominance, Science, 2017, 357: 162-168.

12) Lv Q1, Yang LQ1, Li GL, Wang ZW, Shen ZM, Yu WW, Jiang QY, Hou BY, Pu J, Hu H*, Wang Z.*, Large-scale persistent network reconfiguration induced by ketamine in anesthetized macaques: relevance to mood disorders, Biological Psychiatry, 2016, 79: 765-775. [Commentary by Arnsten AF, Murray JD, Seo H, and Lee D. Ketamine’s antidepressant actions: potential mechanisms in the primate medial prefrontal circuits that represent aversive experience, Biological Psychiatry, 2016, 79: 713-715]

13) Wang Z1., Chen LM1, Negyessy L1, Friedman RM, Mishra A, Gore JC*, Roe AW*, The relationship of anatomical and functional connectivity to resting state connectivity in primate somatosensory cortex, Neuron, 2013, 78:1116-1126. [Previews by Olaf Sporns and Christopher J Honey, “Topographic dynamics in the resting brain”, 78, 955-956]  

Ø Our research on human brain disorders began through a collaboration with clinical doctors in China, focusing on the therapeutic mechanisms of various neuroimaging and neuromodulation techniques, including deep brain stimulation. We aim to uncover the underlying effects of these techniques on patients and establish theoretical guidelines to improve treatment efficacy for individuals. Analyzing MRI data poses a unique challenge, prompting the development of new AI-derived computational models and algorithms to extract rich information on brain structure and function across diverse conditions.

1) Zhao SL1, Lv Q1, Zhang G, Zhang JT, Wang HQ, Zhang JM, Wang MY*, Wang Z*, Quantitative expression of latent disease factors in individuals associated with psychopathology dimensions and treatment response, Neuroscience Bulletin, 2024, advance online.

2) Yao JY, Li ZH, Zhou ZH, Bao AM, Wang Z*, Wei HJ*, He HJ*, Distinct regional vulnerability to Aβ and iron accumulation in postmortem AD brains, Alzheimer's & Dementia, 2024, 20(10): 6984-6997.

3) Lv Q*, Zeljic K, Zhao SL, Zhang JT, Zhang JM, Wang Z*, Dissecting psychiatric heterogeneity and comorbidity with core region-based machine learning, Neuroscience Bulletin, 2023, 39(8):1309-1326.

4) Lv Q1, Zhang M1, Jiang HF1, Liu YL, Zhao SL, Xu XM, Zhang WL, Chen TZ, Su H, Zhang JT, Wang HQ, Zhang JM, Feng YJ, Li YQ, Li B*, Zhao M*, Wang Z*, Metabolic and functional substrates of impulsive decision bias in abstinent heroin addicts after prolonged methadone maintenance treatment, NeuroImage, 2023, 283:120421.

5) Chen XY1, Wang Z1, Lv Q, Lv QM, van Wingen G, Fridgeirsson EA, Denys D, Voon V, Wang Z*, Common and differential connectivity profiles of deep brain stimulation and capsulotomy in refractory obsessive-compulsive disorder, Molecular Psychiatry, 2022, 27(2):1020-1030.

6) Li G, Huang P*, Cui SS, Tan YY, He YC, Shen X, Jiang QY, Huang P, He GY, Li BY, Li YX, Xu J, Wang Z*, Chen SD*, Mechanisms of motor symptom improvement by long-term Tai Chi training in Parkinson’s disease patients, Translational Neurodegeneration, 2022, 11: 6-16.

7) Feng L1, Yin DZ1, Wang XB, Xu YF, Xiang YS, Teng F, Pan YG, Zhang XL, Su JH, Wang Z*, Jin LJ*, Brain connectivity abnormalities and treatment-induced restorations in patients with cervical dystonia, European Journal of Neurology, 2021, 28(5):1537-1547.

8) Hong J1, Bo TT1, Xi LQ1, Xu XQ1, He NY1, Zhan YF, Li WY, Liang PW, Chen YF, Shi J, Yan FH, Gu WQ, Wang WQ, Liu RX, Wang JQ*, Wang Z*, Ning G, Reversal of functional brain connectivity associated with gut microbiome and gastrointestinal hormones after vertical sleeve gastrectomy in obese patients,Journal of Clinical Endocrinology & Metabolism, 2021, 106(9): e3619-e3633.

9) Zhang CC1, Kim S-G1, Li J, Zhang YY, Lv QM, Zeljic K, Gong HF, Zhan SK, Lin GZ, Sun BM*, Wang Z*, Voon V*., Anterior limb of the internal capsule tractography: relationship with capsulotomy outcomes in obsessive-compulsive disorder, Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92(6):637-644.

10) Lv Q1, Lv QM1, Yin DZ, Zhang CC, Sun BM, Voon V*, Wang Z*, Neuroanatomical substrates and predictors of response to capsulotomy in intractable obsessive-compulsive disorder, Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 28(5):1537-1547.

11) Wang ZW, Zeljic K, Jiang QY, Gu Y, Wang W, Wang Z*, Dynamic network communication in the human functional connectome predicts perceptual variability in visual illusion, Cerebral Cortex, 2018, 28(1):48-62.

12) Yin DZ1, Zhang CC1, Lv QM, Chen XY, Zeljic K, Gong HF, Jin HY, Wang Z.*, Sun BM*, Dissociable frontostriatal pathways: mechanism and predictor of the clinical efficacy of capsulotomy in obsessive-compulsive disorder, Biological Psychiatry, 2018, 84(12): 926-936. [Commentary by Hoexter MQ, Are we ready for individualized target planning of ablative procedures in intractable obsessive-compulsive disorder? Biological Psychiatry, 2018, 84(12): e85-e87]

13) Chen XY1, Zhang CC1, Li YX1, Lv Q, Zeljic K, Huang P, Jin HY, Chen SD, Sun BM*, Wang Z.*, Functional connectivity-based modelling simulates subject-specific network effects of focal brain stimulation, Neuroscience Bulletin, 2018, 34(6):921-938.

14) Lv QM1, Wang Z1, Zhang CC1, Fan Q, Zeljic K, Sun BM, Xiao ZP*, Wang Z.*, Divergent structural responses to pharmacological interventions in orbitofronto-striato-thalamic and premotor circuits in obsessive-compulsive disorder, eBioMedicine, 2017, 22:242-248.

15) Pan YX1, Wang LJ1, Wang ZW1, Xu C, Yu WW, Spillmann L, Gu Y*, Wang Z.*, Wang W*. Representations of illusory and real rotations in human MST– a cortical site for the Pinna illusion, Human Brain Mapping, 2016, 37: 2097-2113.

16) Yin DZ, Liu WJ, Zeljic K, Wang ZW, Lv Q, Fan MX, Cheng WH*, Wang Z*, Dissociable changes of frontal and parietal cortices in inherent functional flexibility across the human lifespan, Journal of Neuroscience, 2016, 36(39):10060-10074.

17) Pu J, Wang J, Yu WW, Shen ZM, Lv Q, Zeljic K, Zhang CC, Sun BM, Liu GX, Wang Z.*. Discriminative structured feature engineering for macroscale brain connectomes, IEEE Trans Med Imaging, 2015, 34(11):2333-2342.